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Motivation and Objective

Motivation
*» Esophageal gross tumor volume (GTV) segmentation
» One of the most critical tasks in radiotherapy treatment planning
» Time consuming and inconsistency in manual contouring
“ Segmentation challenges in RTCT
» Non-contrast imaging
» Poor contrast for esophagus
» Poor contrast for esophageal tumors
» Large range from superior to inferior
» Large shape/appearance variations :
** Prior art on GTV segmentation A
» 3D DenseUnet in MICCAI2018*
» Trained and tested on 49 distinct patients
» Performance: low Dice score (<70%) and large Hausdorff distance errors (>100 mm)

o = o~

Ala

Fig. 1 Esophageal GTV examples
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PSNN model

dxwxh ]

*» Progressive semantically nested network (PSNN)
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» Develop an accurate and robust 3D esophageal GTV segmentation method:

» Design a 2-stream chained pipeline incorporate the joint RTCT and PET information

» Introduce a simple yet surprisingly powerful progressive semantically nested
network (PSNN) model, which incorporates strengths of both UNet? and P-HNN?3

» b5-fold cross-evaluate the proposed method on 110 patients

Methods

PET and RTCT

<+ Adding PET modality is helpful yet not trivial:
v"high sensitivity for tumors

Original PET ~_ RTCT

» low specificity for tumors
» very coarse spatial resolution (3~4mm)

» PET and RTCT is not aligned
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Fig. 2 The GTV boundaries are hardly distinguishable |
(b). No high uptake regions appear in PET (c), but the esophagus wall enlargement appears in CT (d).

Overall Framework

Preprocessing Two-stream 3D Deep Network Fusion Pipeline
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Fig. 3 overall GTV
segmentation framework
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“ A 2-stream chained approach effectively fuses RTCT and PET modalities via early and
late 3D deep-network-based fusion

» One stream trained using only RTCT (contextual): ?fT = p](-:T(yj = 1|X°T; wCtT)
» One stream trained using both RTCT and aligned PET (early fusion):
yJEF _ p}EF(yj _ 1‘XCT’XPET; WCT)
» Late fusion of the two streams from CT and early fusion models:
S;jLF — pJL_.F(yj — 1‘XCT, ?CT’ ?EL; WCT’ WEF,WLF)
PET to RTCT Registration

*» register PET to RTCT is difficult (different modality)

¢ Challenges to reqgister diagnostic CT to RTCT:
¢ large differences in body ranges
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Fig. 4 Difference
In diagnostic &
+» soft and hard scanner boards RTCT

¢ different poses for head & arms
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Experiments and Results

Datasets & Evaluation Metrics

*» 110 esophageal cancer patients diagnosed at stage Il or later undergoing RT
* Each patient with a diagnostic PET/CT pair and a treatment RTCT scan

*+ Evaluation metrics: Dice score, Hausdorff distance (HD) in mm, and average surface
distance with respect to the ground truth contour (ASDg7) In mm

Training Data Generation and Training Parameters

*» 80x80x64 training VOI near ground truth GTV or randomly sampled

*» average ~80 training VOI per patient

* Adam solver with momentum 0.99 and a weight decay of 0.005, train for ~40 epochs

Qualitative compare:

d (a): RTCT overlayed
with registered PET

 (b): DenseUNet
trained by RTCT only

d (c): PSNN trained by
RTCT only

 (d): PSNN trained by
early fusion, e.qg.
RTCT+PET

1 (e) PSNN trained by
early + late fusion of
RTCT and PET

v" First two rows show
Importance of PET

v' Last two rows shows
Importance of late
fusion

Table. 1 GTV segmentation performance using: (1) Contextual model (only RTCT); (2) Early fusion model
(EF) using both RTCT and PET; (3) Proposed two-stream chained early and late fusion model (EF+LF)

CT EF EF+LF DSC HD (mm) ASDgr (mm
v 11 0.6564+0.210 129.0£73.0  5.2+12.8 |
3D DenseUNet v

/1 0.74540.163 79.5470.9  4.7410.5

3D PSNN v

Conclusion

“ Presented a two-stream chained 3D deep network fusion pipeline to segment
esophageal GTVs using both RTCT and PET+RTCT imaging channels. And validate
that it provides an effective means to exploit the complementary information seen
within PET and CT

» Introduce a new 3D segmentation architecture, named PSNN, which uses a simple,
parameter-less, and deeply-supervised CNN decoding stream.

“» Demonstrate that our PSNN model outperform the state-of-the-art P-HNN and
DenseUNet networks with remarked margins.
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